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World Models  

Large-language models (LLMs) have gained great traction over the past few years. 

ChatGPT leads as the most popular LLM with around 300 million weekly active users 

worldwide and 10 million paying subscribers to ChatGPT Plus (BackLinko, 2025). LLMs have 

also become increasingly integrated across various industries. In healthcare they are used for 

medical diagnosis assistance (Yang, 2024), patient record summarization (Madzime, 2024), 

personalized treatment recommendations (Benary, 2023), etc. In finance they are used for fraud 

detection and risk assessment (Korukanti, 2024), financial analysis and market predictions 

(Zhao, 2024), personalized financial advice (Lakkaraju, 2023), etc. In the legal industry, they are 

used for legal research and case law analysis (Izzidien, 2024), contract review and drafting 

(Kasundra, 2024), etc. In education, they are being used to personalize learning experiences 

(Abdelnabi, 2025). In HR departments they are being used for resume screening and candidate 

matching (Kavas, 2024), employing onboarding processes (Adejumo, 2024), etc.  

Through the years LLMs like Claude 3.5 Sonnet, GPT-4o, and Llama 3.1 405b, have 

shown great achievement in intelligence. Scoring between 80-90% on a wide variety of 

benchmarks assessing commonsense reasoning around everyday events, multiple-choice 

questions in 57 subjects (professional/academic), and reading comprehension & arithmetic tasks 

(Kirkovska, 2024). However, these same LLMs struggle in a wide variety of areas. They struggle 

with gaining logical reasoning and rely on surface-level patterns (Wan, 2024). They frequently 

make errors in applying rules, even when they can infer them (Mu, 2023). They are prone to 

generating false or misleading information, especially when dealing with topics beyond their 

training data (Yao, 2023). While they seem to do well on the commonsense reasoning 



benchmark, they still struggle with complex reasoning tasks that involve questions at the 

graduate level (Rein, 2023). Further current literature has found that modern LLMs are poor at 

faithfully conveying their uncertainty (Kim, 2024), and that better alignment is necessary in 

order to improve their trustworthiness.  

As LLMs become increasingly popular and integrated across industries, addressing their 

limitations becomes crucial. This paper will first examine the challenges LLMs face in complex 

reasoning and faithfully conveying uncertainty. Next, it will provide a high-level overview of 

how LLMs function. Following this, the concept of “world” models will be introduced as a 

potential solution to these challenges. The paper will then explore implementations of world 

models by Joshua Tenebaum and Yann LeCun, highlighting the key differences between their 

respective approaches.   

Struggle to Reason and Plan 

Reasoning evaluation benchmarks encompass various domains including arithmetic, 

symbolic reasoning, and commonsense reasoning. A study from the paper, “Large Language 

Models for Mathematical Reasoning: Progresses and Challenges” highlights how robustness and 

accuracy decline as problem complexity increases (Ahn, 2024). Further, LLMs struggle to 

generalize across different question formats. For instance, they show inconsistent performance in 

varying textual forms and tend to generate different answers for identical questions when queried 

multiple times. Recently Llama 2 -70B and GPT-4 were tested on their reasoning capabilities 

using the GPQA dataset. This dataset consists of 448 multiple-choice questions written by 

domain experts in biology, physics, and chemistry. The questions are highly challenging, with 

experts (who have or had a PhD) achieving an average accuracy of 65% and non-experts scoring 

around 34%.  



GPT-4 and Llama 2-70B were tested using four learning approaches: zero-shot, few-shot, 

zero-shot chain-of-thought, and few-shot chain-of-thought learning. In zero-shot learning, the 

model is tested using only task instructions without any examples. For instance, ask the model 

“Let's solve this step by step: If John has 5 apples and gives 2 to Mary, who then eats 1, how 

many apples are left with Mary?” with the instruction “Answer the question”, would be 

considered zero-shot learning. Here, the model relies solely on its pre-existing knowledge base 

without any additional examples or context related to the specific question. In few-shot learning, 

the model is provided with a few examples to guide its response. For instance, before answering 

the previous question, the model would be a similar example. Question: “If Sarah has 8 candies 

and gives 3 to Tom, who then eats 2, how many candies does Tom have?” Answer: “Tom has 1 

candy (received 3, ate 2, so 3 - 2 = 1).” In a zero-shot chain of thought learning the model is 

given an additional prompt, such as “Let’s solve this step by step” to encourage reasoning 

through the problem before providing an answer. In few-shot chain-of-thought learning, the 

model is first provided with examples that demonstrate step-by-step reasoning on similar 

questions before being presented with the target question. 

 The accuracy results for LlaMa and GPT-4 under these different learning approaches 

were as follows. On zero shot learning Llama achieved approximately 27.6% accuracy, while 

GPT-4 scored 32.1%. On few-shot learning, Llama had an accuracy of 26.8%, whereas GPT-4 

performed better at 38.1% accuracy. On zero-shot chain-of-thought learning Llama reached 

about a 28.5% accuracy, while GPT-4 improved to 39.5%. On a few-shot chain-of-thought 

learning Llama showed about a 29.1% accuracy and GPT-4 showed a 28.7% accuracy1. These 

results highlight that the models not only underperformed compared to experts but in many cases 

1 I acknowledge that this benchmark has sparked controversy for having incorrect answers and therefore 
the trustworthiness of the dataset is questionable. However I still think that it reinforces the point that 
these models struggle to reason even after being trained on more data.  



also performed worse than non-experts. This is an interesting result as the model is trained on a 

large corpus of data that includes relevant material to physics, chemistry, and biology. Further, 

even when provided with additional context, examples, and explicit prompts to break down their 

reasoning step by step, the models continued to struggle with achieving a high accuracy. It seems 

unclear as to why the models struggle to reason even after their extensive training in 

domain-specific knowledge. However, exploring the underlying causes of this reasoning 

difficulty is beyond the scope of this paper. Instead, this work will focus on how world models 

could offer a potential solution to this challenge. 

Struggle to Convey Uncertainty   

​ LLMs face a significant challenge in effectively conveying their uncertainty. Since they 

often make errors in complex reasoning tasks, it is crucial that they provide users with clear 

indications of uncertainty, much like humans do in conversation. When people express 

uncertainty, it prompts others to double-check information. However, LLMs typically lack this 

capability, often presenting responses with unwarranted confidence. Research by Sree Harsha 

Tanneru explored verbalized uncertainty, an approach where the model is prompted to output a 

confidence score (ranging from 0 to 100%) alongside its explanations. However, the study found 

that this method is unreliable, as LLMs tend to overestimate their confidence. Similarly, a study 

by Gal Yona reinforces the idea that LLMs struggle to faithfully convey uncertainty, highlighting 

the need for better alignment to improve their trustworthiness. Even advanced techniques such as 

chain-of-thought (CoT) prompting, which provides step-by-step reasoning to enhance 

transparency, fail to reliably express uncertainty. A study by Mile Turpin demonstrates that CoT 

explanations can systematically misrepresent the true reasoning behind a model’s prediction. 



These explanations are susceptible to biasing features introduced in the input, which the model 

often fails to acknowledge, further undermining their reliability as uncertainty indicators. 

The inability of LLMs to accurately represent their intrinsic uncertainty can lead to 

overreliance, where users take actions based on incorrect outputs. As LLMs are increasingly 

integrated into various industries, overreliance can have serious consequences. A striking 

example occurred in 2023 when a lawyer unknowingly included fake judicial opinions generated 

by ChatGPT in a legal brief submitted to the court. To mitigate such risks, regulators have been 

developing new frameworks to curb overreliance. Article 14 of the Draft EU AI Act explicitly 

mandates the development and evaluation of measures to prevent this issue. In academic 

literature, extensive research has focused on fostering human-AI collaboration. Various 

interventions aim to improve joint decision-making by providing explanations of model 

behavior, displaying confidence scores to users, or, in some cases, withholding AI-generated 

outputs when uncertainty is too high. However, these methods are ineffective in preventing 

overreliance if LLMs' intrinsic uncertainty cannot be reliably quantified. One might argue that 

instead of relying on LLMs, we should defer entirely to human judgment. However, human 

decision-making is also prone to bias and uncertainty. Cognitive biases such as overconfidence, 

base rate neglect, and the conjunction fallacy frequently distort human reasoning, making blind 

reliance on human judgment just as problematic as reliance on AI-generated outputs. The 

solution to better decision-making is not choosing between LLMs and humans but rather finding 

ways to effectively integrate both while addressing their respective limitations. 

To effectively implement methods that foster human-AI collaboration, it is crucial to 

develop reliable ways to quantify the uncertainty of LLMs. Existing research on this topic can be 

broadly categorized into perturbation-based methods, gradient-based methods, attention-based 



methods, example-based methods, and natural language explanations. However, uncertainty 

quantification in LLMs is particularly challenging due to their immense complexity, with billions 

of parameters. The lack of transparency in their internal mechanisms makes it difficult to identify 

the sources of uncertainty and measure it effectively. Most of the existing approaches require 

white-box access—a setup where the model's internals can be observed but not altered. However, 

access to such subsystems is often restricted and not transparent, further complicating efforts to 

quantify uncertainty. Without reliable uncertainty estimates, decision-makers who rely on LLMs 

risk being misled, potentially leading to severe consequences. On the other hand, if uncertainty 

cannot be effectively addressed, AI systems may be abandoned in certain applications, resulting 

in the loss of valuable predictive insights that could otherwise enhance decision-making. 

High-Level Overview of The LLM Architecture  

Many people conflate Artificial Intelligence (AI) with LLMs, however, while LLMs are a 

kind of AI, they are not the only form. AI is an enormous paradigm encompassing any machine 

that exhibits “intelligent” behavior. AI can be categorized into four paradigms based on 

functionality. Reactive machine AI: These are systems with no memory so they cannot use past 

experiences to influence their decision-making process. They operate solely based on the current 

input they receive. They also follow a set of predefined rules or instructions to determine their 

actions and are designed to perform very specific tasks. An example is Netflix’s recommendation 

engine, which suggests content based on predefined patterns without learning from past 

interactions. Limited memory AI: These systems can recall past events and outcomes, allowing 

them to monitor specific objects or situations over time. LLMs like GPT fall into this category 

since they leverage previous data to generate responses. Theory of Mind AI: This is a theoretical 

form of AI that, if realized, would be capable of understanding the thoughts and emotions of 



individuals. However, no existing AI system possesses these capabilities. Self-aware AI: This is 

another theoretical category that would possess super AI capabilities. Like Theory of Mind AI, 

this paradigm remains purely speculative. 

Not all AI paradigms rely on machine learning, meaning they do not all use the same 

architectural principles as LLMs. Machine learning is a subfield of AI focused on pattern 

recognition and data-driven decision-making. Deep learning, a specialized branch of machine 

learning, deals with processing text, images, and code using artificial neural networks (ANNs). 

Multimodal LLMs, which process multiple data types, fall under the deep learning category. This 

AI hierarchy raises an important question: Can the architecture that LLMs possess lead us to 

Artificial General Intelligence (AGI)? There are many definitions of AGI, but in an interview 

with the HardFork podcast by The New York Times, DeepMind CEO Demis Hassabis described 

AGI as a system that is "generally capable and able to do any cognitive task that humans can do." 

Later in the paper, we will see how Tenebaums' strategy to implement world models utilizes a 

hybrid structure, not just relying on deep learning, but combining symbolic reasoning, 

probabilistic inference, and deep learning. However, LeCun’s approach will fall squarely within 

the deep learning paradigm, as his architecture uses self-supervised learning. Self-supervised 

learning is where a model generates its own labels from unlabeled data to train itself, which is 

what LLMs do.  

Now that I have characterized where LLMs fall in the greater scheme of AI let's dive into 

how they work. LLMs are built using deep neural network (DNN) architectures that consist of 

multiple layers of transformers. DNNs are a type of artificial neural network (ANN). ANNs are 

computational models that consist of interconnected units or nodes called neurons, which are 

organized in layers. An ANN consists of an input layer, one or more hidden layers, and an output 



layer. DNNs are considered deep ANNs because they have multiple hidden layers between the 

input and output layers. In these models, each neuron receives an input, processes it, and passes 

its output to the next layer of neurons. Each hidden layer has a fixed set of weights and these 

weights are multiplied by the input vectors producing an output vector that encodes increasingly 

complex and abstract information about the input sequence. Essentially, each layer transforms its 

input data into a higher-level representation. The transformation involves multiplying the 

original input by the learned weights of the hidden layer, producing a raw score that determines 

how much each element should contribute to the final output. An activation function is then 

applied to capture more complex patterns, allowing the network to capture complex patterns 

beyond simple relationships. Transformer models introduce a critical mechanism called 

self-attention. Self-attention enables the model to weigh the importance of different parts of the 

input sequence differently for each output element.  This allows the model to capture long-range 

dependencies and contextual relationships within the data. LLMs are predictive models trained 

on vast amounts of raw data to learn optimal weight values for each layer. The training process 

involves several iterative stages including tokenization, embedding, forward propagation, loss 

calculation, backpropagation, and optimization. This process allows for the model to gradually 

refine its weight parameters and is outlined in more detail below:  

1)​ The input sentence or statement is tokenized. Tokenization is the process of 

dividing a text into smaller units known as tokens. This is important because the 

text data can be represented numerically which is the format appropriate for 

statistical and computational analysis.  

2)​ Each token is then mapped to a corresponding vector that combines word 

embeddings and positional encoding. Word embeddings capture the semantic and 



syntactic properties of words. Positional encoding preserves the order of tokens in 

the sequence. This step ensures that words with similar meanings have similar 

representations while also preserving the sentence structure.   

3)​ The corresponding vectors of these tokens then enter the first hidden layer, where 

they are multiplied by a fixed set of learned weights within the hidden layer. 

These weights are determined during training through a method of 

backpropagation. Backpropagation is an algorithm by which the model updates 

weights to minimize the error in its predictions. (It is important to note that the 

weights start out random and then are updated in the backpropagation process)  

This results in three different vectors: queries (Q), keys (K), and values (V). Q 

represents the token’s role in retrieving relevant information. K represents how 

much attention a token should receive. V represents the actual information 

contained in the token.  

4)​ The attention scores are calculated by taking the dot product of the query vector 

with all key vectors. This produces an attention score that indicates how much 

focus each token should have on other tokens in the sequence when generating the 

output. 

5)​ To normalize the raw attention scores into probabilities, a softmax function is 

applied. The softmax function transforms the scores into values between 0 and 1, 

ensuring they sum to 1 across all tokens. This step re-scales the scores into a 

probability distribution, making them interpretable as attention weights. The 

model assigns higher probabilities to more relevant tokens to determine the 

relative importance of each value in the sequence.  



6)​ The attention weights are then used to compute a weighted sum of the value 

vectors, generating the final output of the attention mechanism for each position 

in the sequence. This process enables each output element to integrate information 

from all positions in the input, with each contribution scaled according to its 

relevance, as determined by the attention scores.  

7)​ The attention output is passed through a fully connected feedforward network, 

which applies an additional transformation to improve the model's understanding 

of the context. This step introduces more complexity and refines the 

representation before predicting the next token.  

8)​ The output from one transformer layer is passed to multiple subsequent layers, 

where similar attention and feedforward processing occur at deeper levels of 

abstraction. The deeper layers capture more abstract relationships between words 

in the sequence.  

9)​ The final output from the last transformer layer is passed to a linear layer, which 

maps it to a vocabulary-sized probability distribution using another softmax 

function. If the model has a vocabulary of 50,000 words the output will be a 

vector of size 50,000 with each value representing a raw score for a word in the 

vocabulary. The token with the highest probability is selected as the predicted 

next token. 

10)​In models like GPT, the prediction process is repeated iteratively. The newly 

predicted token is appended to the sequence, and the model runs through the 

entire process again to generate the next token. This continues until the end of the 

prediction is reached.  



​ To demonstrate how an LLM would make an inference, imagine I asked, “How many 

states are there in America?” The sentence would first be tokenized into “["How", "many", 

"states", "are", "there", "in", "America", "?"]. Each token would be mapped to a word embedding 

and a positional encoding, "states" might be represented as [0.12, 0.85, 0.63, ...], "America" 

might be [0.45, 0.32, 0.77, …]. The model would assign queries (Q), keys (K), and values (V) 

for each token. It may recongize that “states” and “America” are strongly related and should be 

given higher attention weights when predicting the answer. So when attention scores are 

converted into a probability distribution using the softmax function and we focus on the word 

“states” the model would assign attention weights like: "America" → 0.45, "many" → 0.30, 

"are" → 0.15, "there" → 0.10. This shows that “America” is the most relevant word when 

thinking about “states”. The processed information passes through multiple transformer layers, 

where the model refines its understanding by stacking attention outputs. After several layers, the 

model learns that the phrase “How many states” is a common way to ask for a number. The word 

“America” suggests the model should recall facts about the United States. Then the model’s final 

layer would generate a vocabulary-sized probability distribution over possible next tokens. In our 

example the word 50 would have a 92% probability, 51 would have 6%, 49 would have 1%, 

Washington would have 0.5%, Canada would have 0.1%, etc. Since 50 has the highest 

probability the model would select it as the predicted next token. If this were a long-form 

answer, then the model would repeat the process, generating the next word based on “50”, and 

continuing until a stopping condition, like punctuation, is met.  

Large language models also incorporate “reinforcement learning from human feedback” 

(RLHF) to improve their alignment with human values. While the core task of next-token 

prediction enables models to generate text, it does not inherently ensure outputs that align with 



normative goals. To address this, RLHF refines the model by fine-tuning it on human-preferred 

responses. There are three stages of RLHF: 1) Human crowd workers rank multiple different 

responses produced by the model according to qualities such as helpfulness, harmlessness, and 

honesty. 2) The collected rankings are used to train a reward model, which assigns a numerical 

score to a given response based on its perceived quality. 3) The LLM undergoes a reinforcement 

learning process where it generates responses, receives scores from the reward model, and 

updates its parameters to maximize the predicted reward.  

What is a World Model?  

​ LLMs' main objective is to predict the next token but it is unclear whether this objective 

allows for them to understand the world. Thinkers like Yann LeCun, Raphael Milliere, and 

Joshua Tenenbaum believe that world models are necessary for AI systems to reach human-like 

intelligence. However, what exactly a world model is and ought to look like has been a difficult 

concept to tease out as recent machine learning papers proposing new architectures often 

struggle to clearly articulate what constitutes such a model. There seems to be agreement that in 

general a world model is an internal representation that simulates aspects of the external world. 

An internal representation, “refers to the way our minds store and process information about the 

external world, essentially creating a mental model of reality based on our perceptions, 

memories, and beliefs, which can include visual images, sounds, feelings, and other sensory 

modalities” (Harvey, 2001). Creating a mental model means developing a representation in your 

mind of how something works, based on the data that you acquire through experiences and 

observations. It is kind of like building an internal picture of a system or concept to guide one’s 

thinking and actions. World models take inspiration from the mental models of the world that 

humans develop naturally. Humans develop their “world models” by continuously gathering 



sensory information from their environment, engaging in interactions, and forming mental 

models that evolve and adapt over time based on new experiences. This allows them to make 

predictions and navigate new situations based on learned patterns and casual relationships. A 

system has a world model if it can understand, interpret, and predict phenomena in a way that 

reflects real-world dynamics, including causality and intuitive physics. Having an internal 

representation of the external world enables systems to simulate possible future scenarios more 

effectively because it provides a structured way to reason about cause and effect, track changes 

over time, and anticipate outcomes based on past experiences. A world model would be able to 

encode causal mechanisms that allow it to simulate outcomes of different actions, rather than just 

picking up on statistical correlations. Further, the model can anticipate long-term outcomes better 

because it would be able to internally simulate different possible futures using its mental model.  

Some researchers argue LLMs lack world models because their primary objective is 

next-token prediction rather than building structured, casual representations of the world.  LLMs 

process language by breaking down the text into discrete tokens and predicting the most likely 

next token based on statistical patterns in vast training data. Granularizing inputs into tokens 

inherently loses information that could be crucial for understanding the deeper causal mechanism 

behind events. World models aim to construct coherent, structured representations of the 

environment, forming casual models of how things work rather than just predicting sequences. 

Further, because LLMs are trained to recognize and generate patterns in text, they excel at 

correlational learning - predicting likely words based on context. However, it seems that causal 

reasoning requires more than recognizing statistical association, it necessitates understanding the 

underlying mechanisms that drive events. This may demand a structured model that explicitly 

encodes cause-and-effect dynamics. Moreover, world models are meant to explicitly simulate 



environments, mental states, and counterfactuals, and LLMs do not explicitly simulate mental 

states. These researchers also argue that world models require dynamic updating. This means 

updating beliefs when encountering new data, revising prior knowledge when contradictions 

arise, and tracking evolving contexts such as world events, scientific discoveries, or shifting 

social norms. This would make the system more similar to how humans learn as they constantly 

review their mental models when they acquire new experiences. However, a core limitation of 

LLMs is that their parameters are fixed after training. For instance, if an LLM trained in 2021 is 

asked, “Who is the current President of the United States” it would give an incorrect answer as it 

could not update with new information. Humans are adaptive learners, continuously updating 

both their beliefs and their confidence levels based on new information and experience. In 

contrast, LLMs are static learners, as their knowledge remains fixed after training, preventing 

them from dynamically adjusting their understanding over time.  

 Other researchers argue that LLMs actually do have internal representations that 

resemble a world model, even if they do not have explicitly structured world models. Through 

training on massive data corpora, LLMs implicitly capture statistical patterns that can appear as 

rudimentary causal reasoning. This suggests that rather than lacking a world model altogether, 

LLMs may be learning an implicit, data-driven approximation of one. This perspective suggests 

that models do not require a separate architecture to explicitly encode a world model; rather, the 

world model emerges naturally from the model’s learning process. This idea is highlighted by 

Milliere in his paper.“A Philosophical Introduction to Language Models Part II: The Way 

Forward.” Othello-GPT is a model trained solely on sequences of moves from Othello games 

without being explicitly provided the rules or board structure. It is fundamentally based on a 

transformer model, similar to the GPT-style architecture. The input is a sequence of Othello 



game moves and the goal is to predict the next move in a sequence of Othello moves. The model 

was able to learn patterns of legal moves and strategic play without ever seeing the explicit game 

board. The claim Milliere makes is that Othello-GPT learned an internal representation of the 

board. Researchers used non-linear probes to analyze the model’s activations (neuron outputs). 

They discovered that Othello-GPT implicitly reconstructs the board state within its internal 

neuron activations. This means that the model wasn’t just memorizing sequences but had learned 

to infer and maintain a world model of the board. Othello-GPT was able to form a coherent, 

structured representation of its environment, the Othello board, from just training on legal move 

sequences. It seems plausible that being able to reconstruct the board state and rules means that 

the model developed a mental model of Othello’s environment. In this example, world models do 

not need to be explicitly structured within the architecture itself. A transformer model, trained in 

an autoregressive fashion, can still implicitly develop a world model without being designed for 

it. This suggests that word models could be emergent and that LLMs could develop a world 

model without completely altering their architecture. However, a major challenge in this idea is 

the fact that the Othello-GPT “world model” is not actually a model of the world but the Othello 

game board. LLMs would have to establish a mental model of the world which may be difficult 

to achieve due to the scale and nature of what the emergent internal representation would have to 

look like.  

  Implementing an architecture that incorporates a world model could address several key 

limitations of current LLMs. Unlike standard LLMs, which rely purely on next-token prediction, 

world models enable the anticipation of future outcomes and the ability to update knowledge 

dynamically based on new experiences. This would enhance an LLM’s ability to reason through 

complex tasks, plan ahead, and engage in long-term coherent thinking rather than just producing 



text based on short-term context. Further world model architectures would allow for systems to 

track their own uncertainty by maintaining an internal model of reality that can be queried and 

adjusted dynamically. This would prevent over-reliance by users, as the system could quantify 

and communicate uncertainty rather than producing overconfident but potentially misleading 

outputs. Moreover, it is crucial to establish what it truly means for an AI system to possess a 

world model and to establish how such models should be designed and implemented. This 

understanding will help determine whether world models must be explicitly built into the 

systems architecture or if they can emerge naturally through the learning process. For the 

remainder of this paper, I will examine the explicit world model architectures proposed by Yann 

LeCun and Joshua Tenenbaum to explore how world models should be implemented. By 

analyzing their approaches, I aim to identify key differences in their perspectives on how a world 

model ought to function.  

Yann LeCun’s Notion of a World Model  

According to Yann LeCun, a world model is an internal model that an AI system uses to 

simulate and predict the dynamics of the environment it operates within. LeCun’s architecture 

integrates the word model with several other modules to enhance its functionality. It includes a 

perception module that senses and interprets the environment, a configurator that adjusts the 

system’s level of detail based on task requirements, and task and guardrail objectives that guide 

decision-making while ensuring safety and compliance. LeCun formalizes this idea in more 

concrete terms by defining it as a system that integrates past observation, internal state tracking, 

action proposal, and uncertainty modeling. The model is given 4 inputs. It is given current 

observations through data x(t) and a state estimate of the world (s(t)). This is a representation of 

what the model believes to be true about the current state of the world/environment at a given 



time. The estimate is derived through “memory” of important past information that isn’t directly 

observable in the current moment. For instance, when playing chess we would say that the 

current position is the observation. Previous information like what moves were played, patterns 

or strategies the opponent seems to be following, and general rules of the games would provide 

context to the current observation. The model is also given an action proposal that considers 

what actions might be taken (a(t)). Yann LeCun doesn’t explicitly specify how the action 

proposal is determined, but usually, they could be determined by search algorithms and direct 

inputs from users. However, it would seem that the selection of these actions is typically handled 

by a separate component of the system, which is out of the scope of the paper. Lastly, the model 

is given a latent variable (z(t)) which accounts for uncertainty, by introducing noise or bias. This 

uncertainty represents all the unknown factors that could influence what happens next. For 

instance, if I was traveling to Spain it would account for weather delays. This variable is 

determined through sampling from a distribution or varied over a set. It gives parameters for the 

set of plausible predictions. 

With these variables, the model encodes the raw observation into representations, (h(t) = 

Enc(x(t)).  Representations are just transformed versions of raw data that are more suitable for 

processing by the model. For instance, an observation of an image may just have pixel values but 

the representation might encode edges, object locations, texture patterns, and other features that 

are useful for prediction. Then it computes a prediction about the next state based on the given 

variables (Pred(h(t), s(t), z(t), a(t))). Pred() is a trainable determinist function that predicts the 

next state of the world given current information. This function is typically implemented as a 

neural network that can learn from data. The model learns from sequences of triplets, so it gets 

an observation, generates an action, and then the next observation. Imagine a scenario where a 



robot needs to move object A to location X, but object B is in the way. Through the world model 

process the model would observe positions of A, B, and X. Then it would encode these in 

representations h(t). Then it would simulate multiple action sequences. For instance, try to move 

B first, then A, or try to find a path around B, or try to push both objects together. For each 

simulation, the model would use latent variables to consider uncertainties. Predict outcomes and 

potential problems. Then produce estimates of the likelihood of success. It would choose the 

action sequence with the best-predicted outcome and continuously update predictions as actions 

are taken.  

LeCun proposes using a joint embedding predictive architecture (JEPA) to produce the 

above schema. It is the core mechanism for learning and predicting abstract representations of 

the environment. JEPA is designed to learn abstract representations of the world in a 

self-supervised manner and predict missing or future information without directly reconstructing 

raw sensory input.  Unlike generative models that rely on probabilistic distribution to explicitly 

model uncertainty, JEPA learns deterministic embeddings that capture abstract representations of 

the world. Deterministic embeddings mean that JEPA would always produce the same 

embedding, there is no randomness or probability involved in how it encodes information. It 

directly learns fixed representations that describe the world in a predictable way, because 

according to LeCun, “probabilistic models are intractable in high-dimensional continuous 

domains”.  JEPA operates in an abstract space where relationships between states are learned 

directly. For instance, instead of breaking text into discrete tokens, JEPA would make entire 

sentences or phrases in a continuous, structured embedding space. These embeddings would aim 

to capture the sentence's abstract meaning and relationships between different concepts. For 

instance, given the sentence, “The cat jumped over the fence because it saw a bird” the model 



would learn an embedding that captures the relationships between the words. In LLMs, each 

word is mapped to a vector based on how statistically often they occur. “Cat” and “jumped” 

might have a strong learned relationship because they frequently appear together.“Because” 

would not necessarily indicate a causal relationship since the model just predicts the most likely 

words based on patterns. This is why if we removed “saw a bird”, an LLM may struggle to infer 

what triggered the jump unless it had been trained on enough similar experiences. However with 

JEPA, “because” would allow the model to infer a causal structure. Instead of just encoding the 

individual word, JEPA constructs an internal graph-like representation. This means that if we 

removed the word “saw a bird” JEPA would still be able to infer that some external stimulus 

caused the cat to jump. The system would then save the abstract state representations of such 

embeddings. For instance state 1: “cat on ground”, action: “jump”, state 2: “cat over the fence”. 

  JEPA is integral for the representation learning component of the world model where 

(h(t)) = Enc(x(t)). It specializes in learning these structured representations efficiently because it 

maps the input and output into the same abstract embedding space. The idea is to map both the 

input x (current observation) and the target y (future observation) into a shared representation 

space and then perform predictions in that space, rather than in the raw data space. By 

performing predictions in the shared representation space the model learns to capture only the 

essential structures needed for prediction, eliminating the need to store unnecessary details. The 

embeddings also enforce consistency between related inputs and their logical continuations.  

Let's imagine that the input is “the glass fell off the table” and the output is “the glass broke”. 

JEPA would learn that the transition between “glass fell” and “glass broke” is a structured, 

predictable relationship. This is powerful because even if the raw wording or format of the inputs 

differed, JEPA would still be able to recognize semantically equivalent inputs. So if the input 



was “there was a loud noise” or “the glass cracked” JEPA would understand they are all valid 

representations of the next state. This allows for the system to make high-level inferences rather 

than memorizing patterns which is helpful in complex reasoning tasks. Essentially the way JEPA 

is structured the embeddings capture casual relationships within the data, which allows the model 

to reason about cause-and-effect relationships and dependencies, and predict future states. This 

approach still utilizes a large amount of training data however what is done with the training data 

diverges from the LLMs approach. Rather than focusing on generating data distributions and 

patterns, JEPA serves to learn a structured representation of the world by predicting in an 

abstract representation space.  

JEPA differs from traditional LLMs in that its primary learning objective is to predict 

future or missing states in an abstract representation space. Instead of processing language 

through sequential token prediction, JEPA constructs and reasons through structure relationships 

in its internal world model. Rather than viewing words as isolated units within a probability 

distribution, JEPA learns abstract, structured knowledge representations that allow it to directly 

infer answers rather than simply generating the most probable next token. The model organizes 

relationships between concepts in a structured graph-like manner, enabling it to retrieve 

explicitly stored facts rather than relying on probabilistic word associations. For instance, if 

JEPA has previously encountered the fact that “the U.S has 50 states”, it can directly retrieve this 

structured knowledge from its internal representation. However, if the exact fact is not stored 

explicitly, JEPA does not default to probabilistic guessing like a traditional LLM. Instead, it 

infers the answer using related knowledge, such as the “U.S is a country that has internal 

divisions”, “Canada has 10 provinces”, and “The European Union has 27 member states”. Using 

this internal knowledge structure, JEPA can estimate a reasonable range for the number of U.S. 



states based on comparative reasoning.  It is important to note that JEPA does not explicitly store 

knowledge as a graph. Instead, it learns structured relationships between concepts through its 

embedding process, where related concepts are positioned close together in a high-dimensional 

space. This structure allows JEPA to infer missing information by aligning embeddings rather 

than relying on explicit symbolic rules or pre-defined retrieval mechanisms. Moreover, due to the 

nature of how it predicts, JEPA is aware of the internal representations it possesses and those it 

lacks. This allows it to convey uncertainty more effectively to the user, reducing the risk of 

hallucination or misleading outputs.   

 It is worth mentioning that LeCun believes that LLMs are a simplified version of the 

JEPA model. LLMs work directly with raw inputs however these inputs are not encoded into a 

representation. In Lecun’s world model, there is complex state tracking and in an LLM this state 

tracking is just a window of past tokens. World models consist of full prediction with actions, 

current state, past state, and latent variables, they explicitly model actions and their effects. 

However LLMs only predict the next token using the past state and latent variables, they have no 

concept of actions. World models can handle continuous values and physical states, however 

LLMs only work with discrete tokens. World models can learn complex state encodings but 

LLMs just use raw token history. World models predict full state transitions however LLMs only 

predict the probability distribution over the next token. World models can learn complex memory 

structures but LLMs have a fixed-size window of past tokens. This shows why LLMs may be 

limited compared to full-world models, they can’t truly simulate physical systems, can’t model 

continuous state spaces, and are limited to pattern matching in token space.  

Tenenbaum's Notion of a World Model   



Tenebaum's proposal is intended to create a new computational framework, rational 

meaning construction, which includes building a hybrid architecture that explicitly encodes 

world models into the architecture. The program then performs inference on these models to 

predict and plan, explain and evaluate, learn, and teach, conditioned on goals, observations, and 

background knowledge. The world model involves a probabilistic generative framework that not 

only encodes existing knowledge but also allows for the structured expansion of this knowledge 

based on new information received through language. Let's imagine an example of dynamic 

physical scenes. We want to answer questions like, “How fast does the blue ball move after 

collision?”. The first step would be to create a generative world model listing background 

information relevant to the domain, such as mass, shape, friction, and kinematic states of the 

balls and blocks on the tabletop. Each object's physical properties such as mass and friction are 

modeled as stochastic variables (random). This allows for a predefined distribution but also for 

the properties to vary given a new condition.  When a specific query is included in natural 

language, “imagine that the red object is a ball, and is pretty heavy,” the descriptors are 

translated into conditional expressions with the probabilistic program. For instance “pretty 

heavy” may translate to “mass 2* greater than initial mass”.  The world model is then updated to 

represent the distribution of the relevant physical properties. For instance, the original world 

model indicated that the red ball has a mass of 140 grams. Now that mass would be updated to 

280 grams. Using a physics engine integrated within the probabilistic framework, the model 

would simulate physical interactions over time, considering the initial states and forces derived 

from probabilistic conditions. The engine would then calculate the resulting velocities of the 

objects involved in the collision, updating these values step-by-step through the simulation 

timeline. After the simulation, the model would extract the velocity of the ball immediately 



following the collision, which is the direct answer to the query. However since the model needs 

to account for uncertainties and variability in the initial conditions, rather than making a single 

deterministic prediction, it assigns probabilities to different future scenarios.  

Tenenbaum’s generative word models integrate the probabilistic language of thought 

(PLoT). According to a paper called “Concepts in a Probabilistic Language of Thought” written 

by Goodman, Tenebaum, and Gertstenbert, “PLoT is a system in which representations are built 

from a language-like composition of concepts, and the content of those representations is a 

probability distribution on world states.” It is an extension of the Language of Thought (LoT) 

hypothesis, which posits that human cognition relies on structured, symbolic representations 

similar to the grammar and rules of a language.  PLoT incorporates probability theory to allow 

the AI system to infer, generalize, and make decisions in uncertain environments. PLoT defines 

how knowledge is structured in the AI’s internal world model. Instead of memorizing pixel-level 

information, PLoT enables the model to represent concepts as structured, compositional symbols 

with probabilistic relationships. For instance, given the statement “a cup is a container that holds 

liquid” the model encodes the object “cup”, then the properties, “container”, “holds liquid”, then 

the relationship, “cup -> contains -> liquid”. The symbolic structure is compositional, meaning it 

can be reused and extended to other concepts like, “bowl”, “bottle”, or “teapot”.  It translates the 

raw data into structured symbolic representations that follow logical and grammatical rules. 

Further, instead of memorizing that “cups hold liquid” as a fixed fact, PLoT adds a probabilistic 

exception to the general rule, “cups hold liquid (with probability 75%)” in the case that the cup is 

actually holding markers. Unlike LLMs that tend to memorize exceptions explicitly and struggle 

with outliers, PLoT dynamically applies structured rules with probabilities, allowing it to reason 

about edge cases without retraining. PLoT also assigns probabilistic relationships to uncertain 



attributes. This allows for reasoning under uncertainty and making flexible predictions. For 

instance the probability of an animal flying given it is a bird is 95%. However the probability of 

an animal flying given it is a penguin is 0%. Now, if PLoT encounters a new bird species it has 

never seen before, it can infer a likely probability for its ability to fly based on its internal 

representations of other birds that can and cannot fly. Moreover, PLoT models cause-and-effect 

relationships explicitly rather than relying on statistical correlation. For instance, it has the 

general representation given from an input, that “if you drop a cup, it will break”: “Drop(object) 

-> Impact (surface) -> Break(Object) (with probability 90%). Now, if asked “What if the cup 

were made of rubber?” PLoT would adjust the primary general representation to “Drop(object) 

-> Impact (surface) -> Break(Object) (with probability 5%). This enables counterfactual 

reasoning, meaning that the model can test alternative realities rather than just predicting based 

on past data. PLoT differs from deep learning because it learns from few examples, uses 

symbolic, compositional structures, uses probability to make flexible, uncertain predictions, and 

simulates casual interactions and counterfactuals.  

Tenenbaum’s architecture integrates PLoT with LLMs to translate natural language 

utterances into code expressions in a probabilistic programming language. Probabilistic 

programming is a family of mathematical languages and actual programming languages that 

allow researchers to take the conceptual idea of rational world modeling, inference, and decision 

and turn it into practical engineering terms that can be models of human minds as well as more 

human-like AI. To do this, the programs build on symbolic languages to express abstract 

knowledge for modeling the world. They use those symbolic languages to express probabilistic 

models where you can be uncertain about everything: the state of the world, how the world 

works, how the different kinds of data you are receiving are connected to the underlying state of 



the world, and then the ability to make joint inference about all those different sources of 

uncertainty as the basis of perception for reasoning, planning, and learning. Probabilistic 

programs allow for this to happen by producing thoughts that the system can internalize and 

externalize through probabilistic inference. Imagine a scenario where a model observes the 

following human behavior, “Alice reaches for an umbrella before stepping outside”. An LLM 

might predict text-based associations, such as: “People carry umbrellas when it rains”. However, 

PLoT translates the observation into a structured probabilistic program, “let’s 2assume a 70% 

chance of rain”. If it is raining there is a 90% chance someone takes an umbrella and if it is not 

raining there is a 10% chance they take an umbrella for another reason (sunshade). Then the 

system performs Bayesian inference to update beliefs given new data, like if Alice does take an 

umbrella. Once the model internalizes this reasoning, it can use it in future interactions, for 

instance, if Bob later asks, “Should I bring an umbrella” the model would re-run the probabilistic 

program that was run on Alice. Through this schema Tenenbaums model can infer hidden causes 

from observed effects, model uncertainty explicitly, and generalize learned knowledge instead of 

memorizing past data.  

Tenebaum is proposing a unified model framework that incorporates various aspects of 

language processing. However, while the framework is unified, it is likely designed to be 

modular, where specific sub-models or components handle different aspects of the cognitive 

processes. The model would determine which sub-model is relevant by using natural language to 

provide clues about the relevant domain. The model would have generative world models 

encoded with a set of assumptions, rules, and representations based on theoretical knowledge, 

empirical data, and expert input over the most relevant and common domains. Further, as the 

2 All of these statements would be written in a high level programming language like Python. However for 
the sake of clarity I wrote the statements as natural language expressions.   



system interacts with users it would gather new information that would refine its existing world 

models. If the interaction is not well-documented, the system notes this as a gap and may be 

updated. Tenenbaum's proposal includes taking new information and adapting it into the model's 

architecture. Further, it would seem intractable to hard code generative world models for all 

domains, however, Tenebaum also gives a proposal for the architect's ability to create new world 

models given the existing ones. This approach signifies a shift from scaling up (LLM’s 

approach) to growing up. Rather than inputting vast amounts of training data the model uses 

explicit world models and then uses probabilistic programming to update the world models to 

match the scenario.  

Key Differences Amongst Two Architectures  

Both LeCun and Tenebaum argue that world models are essential components of AI 

systems, as they are fundamental to human cognition. At their core, world models serve as 

internal representations of reality, a concept on which both researchers agree. They also share a 

common stance on moving beyond traditional deep learning techniques—rather than relying 

solely on pattern matching, they advocate for models that can learn structured relationships 

between raw inputs. However, their approaches to world models diverge in key ways. LeCun 

proposes an architecture that he describes as a more advanced and robust extension of what 

LLMs do in theory. In contrast, Tenenbaum emphasizes the integration of explicit world 

knowledge and reasoning capabilities into AI systems. His work focuses on combining neural 

language models with cognitively inspired symbolic modules, such as physics simulators, 

graphics engines, and planning algorithms. For the remainder of this paper, I will highlight two 

notable differences between their proposed world model architectures. 1) LeCun takes an 

empiricist approach, favoring learning from experience, while Tenenbaum adopts a nativist 



perspective, advocating for the inclusion of innate structures and prior knowledge. 2) LeCun 

moves away from probabilistic approaches, whereas Tenenbaum heavily incorporates 

probabilistic modeling to capture uncertainty and support reasoning.  

Nativism Vs Empiricism  

In the debate over how intelligence emerges—both in humans and artificial 

systems—Joshua Tenenbaum and Yann LeCun represent two distinct philosophical perspectives. 

Tenenbaum’s approach aligns with nativism, which posits that certain cognitive structures and 

knowledge are innate rather than acquired purely through experience. LeCun, on the other hand, 

follows an empiricist approach, which argues that knowledge is entirely learned from experience 

without the need for pre-existing structures. These contrasting views shape their respective AI 

architectures: Tenenbaum’s PLoT model integrates symbolic, structured knowledge from the 

outset, whereas LeCun’s JEPA architecture emphasizes self-supervised learning from raw data. 

Nativism holds that certain abilities, cognitive structures, or core knowledge are 

pre-wired into the brain rather than acquired solely through experience. Tenenbaum’s 

probabilistic and symbolic approach mirrors this idea, as his architecture incorporates cognitively 

motivated symbolic modules that enable structured reasoning. Like nativists, he believes that the 

human mind comes pre-equipped with fundamental concepts and learning mechanisms, allowing 

for rapid generalization from minimal data. Within the nativist tradition, several theories have 

been proposed to explain innate cognition. Some nativists argue that domain-specific knowledge 

is built into the brain at birth, helping infants navigate the world from their earliest moments. For 

example, Elizabeth Spelke’s Core Knowledge Theory suggests that babies are born with innate 

knowledge in physics (such as object permanence), number sense, and social cognition. Others, 

like Noam Chomsky, propose that while humans may not be born with explicit knowledge, they 



possess built-in mental structures that facilitate learning. His Universal Grammar (UG) theory 

suggests that humans are born with a Language Acquisition Device (LAD)—a cognitive 

structure that provides a framework for learning language. This explains why children can 

rapidly acquire complex languages without systematic training, a phenomenon that would be 

difficult to explain under a purely empiricist view. Tenenbaum’s proposal follows this nativist 

line of thinking. He argues that in the first year or two of life, humans exhibit intelligence even 

before they acquire language, demonstrating abilities such as helping others, recognizing 

intentions, and interacting meaningfully with their environment. This suggests that humans 

possess built-in cognitive structures that facilitate learning from minimal data and allow for 

robust generalization. In an interview, Tenenbaum explicitly states, “There’s a key intelligence 

that’s built in from the beginning, not what emerges at the end. (...) Our minds are built from the 

very beginning to have models of the physical and social world.” This view directly contrasts 

with LeCun’s empiricist stance. 

Empiricism, as defined by the Stanford Encyclopedia of Philosophy, asserts that “we 

have no source of knowledge in S or for the concepts we use in S other than experience.” This 

means that knowledge is not innate but instead acquired entirely through sensory experiences 

and interaction with the environment. This is the perspective that LeCun, LLMs, and Millière’s 

architectural ideas align with. The empiricist tradition has deep philosophical roots. John Locke 

famously argued that the human mind is a tabula rasa (blank slate), gaining knowledge only 

through experience. Later, B.F. Skinner and John Watson developed behaviorist theories, 

proposing that all behavior is learned through conditioning. For instance, in language acquisition, 

children learn words through reinforcement—hearing speech and receiving positive feedback. 

This is strikingly similar to how LLMs improve performance through Reinforcement Learning 



from Human Feedback (RLHF), where models are refined based on human preference rankings. 

It is important to note that empiricism does not reject the idea that the brain has structures that 

support learning. Rather, it denies that these structures contain innate knowledge. Instead, 

empiricists argue that the brain has general learning mechanisms—such as memory, pattern 

recognition, and neural plasticity—that allow knowledge to be built entirely from experience. 

This philosophy is directly reflected in neural networks, which start with randomized weights 

and only gain knowledge by processing training data. Unlike Tenenbaum’s PLoT model, which 

incorporates structured symbolic modules, neural networks do not have built-in functions like a 

physics engine or an innate conceptual framework. Instead, their knowledge emerges through 

data-driven learning, much like an empiricist would argue for human cognition. LeCun’s world 

model architecture exemplifies this empiricist approach by emphasizing self-supervised learning. 

Rather than integrating explicit symbolic reasoning systems or predefined physics engines, his 

model observes massive amounts of raw data and utilizes the JEPA encoding structure to capture 

causal relationships. Instead of explicitly defining the rules of physics, LeCun’s model learns 

these rules purely from data, discovering patterns in a different representational space than 

traditional LLMs. This aligns with empiricism, which holds that the mind starts as a blank slate, 

and knowledge is constructed solely from experience. 

JEPA vs PLOT 

JEPA and PLoT are key components of both LeCun and Tenenbaums architectures 

respectively. However, they differ greatly with respect to how they form internal representations 

make predictions, and handle uncertainty. JEPA’s primary goal is to learn structured abstract 

representations and predict missing/future states in a high-dimensional space. PLoT’s primary 

goal is to use probabilistic reasoning and symbolic structures to model knowledge, uncertainty, 



and casual relationships. Notably, LeCun’s architecture does not rely on probability distributions, 

whereas Tenenbaums architecture explicitly incorporates probabilistic methods to handle 

uncertainty. One of the fundamental differences between these models is how they represent 

knowledge internally. JEPA learns abstract, compressed embeddings, encoding knowledge in 

continuous vector representations where similar concepts are positioned close together in 

high-dimensional space. In contrast, PLoT organizes knowledge into discrete symbolic 

structures, representing information through logical rules, objects, properties, and relationships. 

This means that while JEPA generalizes knowledge through embeddings, PLoT explicitly 

defines it using compositional, rule-based frameworks. Let's take the sentence “If it rains, then 

you should take an umbrella”. Instead of encoding the word separately, JEPA would embed the 

entire relationship between “rain” and “taking an umbrella” as a structured concept in its learned 

representation space. It would store “rain” and “umbrella” as related abstract states, forming a 

structured transition like: State 1: “Raining”, Action: “Take Umbrella”, State 2: “Stayed dry.” 

These representations would exist in a high-dimensional abstract space. Whereas, PLoT would 

explicitly encode the relationship as a conditional rule: P(Take Umbrella| Rain) ~ 95%. This 

means that “given it is raining, there is a 95% probability that carrying an umbrella is the correct 

action.” It would also break down the statement into modular components, event: “it is raining 

(weather = rain)”, consequence: “carrying an umbrella prevents getting wet.”, casual rule: “if 

rain, then carry an umbrella.” 

Their approaches to prediction also diverge significantly. JEPA is deterministic, meaning 

it learns a prediction function that outputs a single, structured embedding for the next state. 

PLoT, on the other hand, is probabilistic, predicting a distribution over possible outcomes using 

Bayesian inference and probabilistic programming. This fundamental difference affects how they 



handle missing information. When encountering incomplete data, JEPA does not resort to 

probabilistic guessing but instead aligns learned embeddings to generate the most consistent 

representation based on prior knowledge. In contrast, PLoT explicitly models uncertainty, using 

logical rules and probability distribution to infer missing information rather than making a single 

deterministic prediction. Let’s consider the following scenario, “yesterday, Alice left her house 

with an umbrella. A few hours later, she came home with wet clothes, what happened?” Since 

the model does not have an explicit encoding of this situation it would compare the current 

incomplete input to previously learned structured relationships such as, “rain leads to wet clothes 

unless protected by an umbrella”, “an umbrella is meant to keep someone dry”, and “if someone 

is wet despite having an umbrella, it likely means they didn’t use it or rain was too strong”. 

Based on this representation JEPA would predict that most likely, “it rained, and Alice either 

didn’t use the umbrella or it wasn’t effective enough to keep her dry.” However, PLoT would 

generate multiple possible explanations and assign probabilities to each: P(Rained & Alice didn’t 

use the umbrella | Wet Clothes) = 0.6 and P(Umbrella broke|Wet clothes) = 0.2. If additional 

information were provided like, “Alice's umbrella was inside her bag the whole time” then PLoT 

would update these probabilities.  JEPA seems to prioritize structured, determinist inference and 

aims for a single internally consistent representation rather than maintaining uncertainty while 

PLoT explicitly represents multiple possibilities and models uncertainty using probability 

distributions. Additionally, JEPA accounts for unknown factors by introducing a latent variable, 

ensuring that missing information is structured within its learned representations rather than 

treated as an explicit probability. In contrast, PLoT directly represents uncertainty using 

probability distribution, allowing it to reason about multiple possible outcomes. Ultimately, 

LeCun’s JEPA and Tenenbaum’s PLoT represent two fundamentally different approaches to 



incorporating world models into AI. While JEPA seeks to develop flexible, structured 

embeddings for predictive learning, PLoT relies on explicit symbolic reasoning to model 

uncertainty and causal structures. Understanding these differences is crucial for advancing AI 

systems that require robust world representations, predictive reasoning, and the ability to handle 

incomplete or uncertain information effectively. 

Conclusion  

In this thesis, I examined the current limitations of large language models (LLMs), 

particularly their challenges in expressing uncertainty, reasoning, and planning in complex 

situations. To provide context for the advancements in AI, I first outlined the fundamental 

structure of LLMs and their limitations before introducing the concept of world models. I then 

explored the ongoing debate over whether world models need to be explicitly built into AI 

architectures or whether they can emerge naturally from learning processes. Following this, I 

examined how the two explicit world model architectures proposed by Yann LeCun and Joshua 

Tenenbaum align with two major cognitive theories—nativism and empiricism—and their 

implications for AI development Finally, I highlighted their key differences in approach, with 

specific emphasis on JEPA and PLoT.  

At this stage, I remain uncertain about which approach is best suited for replicating true 

world models in AI systems. However, I strongly believe that a shift in architecture beyond 

traditional LLMs is necessary if we aim to achieve human-level intelligence. In particular, I 

argue that the development of explicit world model architectures is crucial due to their ability to 

express and manage uncertainty effectively. Both humans and AI systems will always face 

uncertainty, as the world itself is inherently unpredictable. However, the ability to convey and 

account for uncertainty transparently is essential for fostering human-AI collaboration and trust. 



Thus, moving toward world models in any capacity is a critical step—not only for addressing the 

shortcomings of current LLMs but also for developing AI systems that can genuinely assist 

humans in better decision-making. By integrating structured world models, AI can move beyond 

mere statistical pattern matching to become more adaptive, interpretable, and aligned with 

real-world reasoning and planning. 
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